Quantcast

Cutting-edge issues in celiac disease and in gluten intolerance.

Abstract

"Celiac disease (CD) is a gluten-dependent immune-mediated disease with a prevalence in the general population estimated between 0.3% and 1.2%. Large-scale epidemiological studies have shown that only 10-20% of cases of CD are identified on the basis of clinical findings and that laboratory tests are crucial to identify subjects with subtle or atypical symptoms. The correct choice and clinical use of these diagnostic tools may enable accurate diagnosis and early recognition of silent CD cases. In this review, we have considered some relevant aspects related to the laboratory diagnosis of CD and, more extensively, of gluten intolerance, such as the best combination of tests for early and accurate diagnosis, the diagnostic role of new tests for detecting antibodies against neoepitopes produced by the transglutaminase-gliadin complex, the forms of non-celiac glutenintolerance (gluten sensitivity), and the use and significance of measuring cytokines in CD."

[link]

Serum Prolactin Levels after Administration of the Alimentary Opioid Peptide Gluten Exorphin B4 in Male Rats

Abstract

"Gluten Exorphins are opioid peptides identified in enzymatic digests of gluten. The effects of Gluten Exorphins are still largely unknown. It has been shown that Gluten Exorphin B5 (Tyr-Gly-Gly-Trp-Leu) stimulates Prolactin secretion in male rats. In this study, we have evaluated the Prolactin response to Gluten Exorphin B4, another exorphin whose structure (Tyr-Gly-Gly-Trp) is identical to that of the NH(2)-terminal sequence of GlutenExorphin B5. To this aim, five groups of male rats were given the following intravenous treatments: vehicle, Gluten Exorphin B5 3 mg kg-1 body weight, Gluten Exorphin B4 at the doses of 3, 6 and 9 mg kg-1 body weight. At the dose of 3 mg kg-1 body weight, Gluten Exorphin B5 induced a significant increase in Prolactin levels. Gluten Exorphin B4 could not modify Prolactin secretion, even when administered at doses three times higher than those effective for Gluten Exorphin B5. The present study: (1) indicates that Gluten Exorphin B4 does not modify Prolactin secretion in male rats; (2) confirms the ability of Gluten Exorphin B5 to exert a stimulatory action on Prolactin release; (3) suggests that the presence of the carboxy-terminal leucine in Gluten Exorphin B5 is essential for its action on Prolactin secretion."

[link]

Opioid Peptides Derived from Food Proteins: The Exorphins

Abstract

"Peptides with opioid activity are found in pepsin hydrolysates of wheat gluten and alpha-casein. The opioid activity of these peptides was demonstrated by use of the following bioassays: 1) naloxone-reversible inhibition of adenylate cyclase in homogenates of neuroblastoma X-glioma hybrid cells; 2) naloxone-reversible inhibition of electrically stimulated contractions of the mouse vas deferens; 3) displacement of [3H]dihydromorphine and [3H-Tyr, dAla2]met-enkephalin amide from rat brain membranes. Substances which stimulate adenylate cyclase and increase the contractions of the mouse vas deferens but do not bind to opiate receptors are also isolated from gluten hydrolysates. It is suggested that peptides derived from some food proteins may be of physiological importance."

[link]

Effect of gluten exorphins A5 and B5 on the postprandial plasma insulin level in conscious rats.

Abstract

"The effect of exogenous opioid peptides, gluten exorphins A5 and B5, which were isolated from the enzymatic digest of wheat gluten, on thepostprandial insulin level were examined in rats. The oral administration of gluten exorphin A5 at a dose of 30 mg/kg w. potentiated the postprandialplasma insulin level and the effect was reversed by naloxone. The administration of gluten exorphin B5 showed a similar effect at a higher dose (300 mg/kg w). Furthermore, intravenous administration of gluten exorphin A5 at a dose of 30 mg/kg w. also stimulated the postprandial insulin release. The fact that orally and intravenously administered gluten exorphin A5 stimulates insulin release suggests that it modulates pancreatic endocrine function by the action after the absorption rather than within the the gastrointestinal tract."

[link]